

Magnetic Switches

Made in Germany

ASA Schalttechnik - we drive the industry

Are you looking for reasonably priced technology that works smoothly, that fully meets your requirements and that offers a long service life with constant high performance as you would expect? And, on top of this, a range of products that is convincing in terms of both breadth and depth? Then we have the good news that you have been waiting for: At ASA Schalttechnik we do everything imaginable so that your wishes become reality.

Our team consists of doers, creative minds and service experts: Experienced professionals who live and breathe quality, who draw on unlimited resources on $2.000 \mathrm{~m}^{2}$ production space, are dedicated to detail and who get to the heart of things when it comes to control and switching technology. Alltogether, refreshingly pragmatic, truly German, straightforward and good.

We love challenges

Our all-round competence is reflected in our tried and tested standard products that can be delivered at short notice ex-factory. But also in our individual custom-made solutions manufactured in small volumes. Consequently, we are a competent partner and, when the need arises, a flexible manufacturer of niche products, developed and designed in cooperation with our customers.

ASA Schalttechnik proudly stands for this philosophy and delivers every time. As a family-owned enterprise, our products offer quality "Made in Germany".

Our product range

Mechanical, magnetic and electronic switchgear for machinery and plant engineering - control and automation technology, fire protection technology, medical technology and much more:

- Limit Switches
- Medical switching devices
- Switchgear
- Foot Switches
- Magnetic Switches
- Safety Switches
- Level Switches
- Special switching devices

Quality is a continuous process

Or to put it another way, it's a never-ending process - an infinite cycle of testing, analysing, understanding, learning, optimising and documenting. That's life. Our suppliers also support us with this process, as it's the only way to make quality management work. And we make sure to adhere to it: With staying power since 1975.

Enviromental protection is a point of honour

Save electricity, water and heating energy. Avoid waste and plan responsible use of raw materials in production. For our team, ecology is not just hype - it plays an important part in our day-to-day operations, also with regard to RoHS, REACH and recycling. Beneficial to nature, beneficial to us all.

It's the team that makes the difference

ASA Schalttechnik: People who achieve - hands-on people who think for themselves and who inspire us with their energy, ideas and experience. Whether they work in our production department, in customer relations or in management, our committed staff does everything to achieve best prices, top-of-class products, best delivery times and excellent services. And that's a promise!

made

Germany

ASA magnetic switches

ASA magnetic switches

Ranging from standard switchgear to special designs: ASA magnetic switches are used in all areas of machinery and plant engineering - in particular for monitoring, positioning and controlling purposes of lifting and rotary movements. Highly successful application for control and metering tasks.

Designed for maximum operating safety

ASA magnetic switches have been designed to comply with the IEC/EN 60947-5-1 standard. Their high protection class according to IEC/EN 60529 offers sufficient safety and protection against dirt, gases and humidity. Even shocks have little impact on the devices. In addition, the devices feature a low transition resistance, various contact functions and switching capacities and a high switching frequency - for almost unlimited application possibilities.

Please also note the technical details on the following pages.

Magnetic switch line - overview: Round designs - Angular designs

Round designs

Our round designs are provided in metal or plastic housings.

Angular designs
Our angular designs are provided in plastic housings.

The various product lines offered by ASA include a wide selection of sophisticated switch configurations. Can't find a standard solution to match your individual requirements? We look forward to discussing your needs and providing customised special configurations.

ASA magnetic switches

How to find the correct switch and ensure its professional deployment:

Our standard portfolio includes approximately 40 different housing forms to accommodate the various performance requirements. In addition we can also provide special designs. The housings can be equipped with reed contacts offering different capacities and functions. Please refer to page 11 onwards for proven, popular switch configurations. Please note the frontal or lateral start-up direction.

The combination matrix of magnetic switches and magnets on pages 30-31, in particular, has been designed to assist you in selecting the appropriate product variant.

Frontal start-up direction design

Lateral start-up direction design

Application example

ASA magnetic switches proved successful in machinery and plant engineering for monitoring, positioning and controlling of all lifting and rotary movements.

- Machine construction: Machining and processing of metals, plastics, textiles, stones, timbers, beverages, foods, chemicals, packaging, control and counting tasks, dosage...
- Plant engieering: storage and transport facilities, lifts, door interlocks, hydraulics, pneumatics, alarm devices, intrusion detection...

Drive and switching characteristics

The switching characteristics are mostly determined by the drive direction and pole orientation of the magnet. Typical characteristics are shown in the drawings below.

Frontal design

Lateral design

Lateral design

ASA magnetic switches

Assembly instructions

The switch operating force of magnetic switches is transferred from the magnet to the switch by means of a magnetic field. The magnetic field can be reduced or increased by iron parts installed in close vicinity to it. Caution: Installation conditions are very customer- and project-specific! We are happy to advise you, find the apprpriate configurations and provide customized data that you can rely on.

Type key for magnetic switches

Example: MA 5 W 80

TYPE MA Magnetic switch	Connection ST plug-in type
	Switching capacity 6060 VA $80 \quad 80 \mathrm{VA}$ 100 100 VA
Housing designs Designs 04 to 52	Contact functions s normally open contact o normally closed contact W change-over contact so NO bistable SOW NC bistable

Technical specifications for magnetic switch

Vibration and shock resistance:	Vibration resistance $50-100 \mathrm{~Hz}$, depending on the switch design Average shock resistance $50 \mathrm{~g}, 11 \mathrm{~ms}$. The values above can be increased by elastic intermediate shims. The lowest sensitivity can be observed in axial direction.
Ambient temperatures:	All standard designs can be used from $-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$. Special designs for wider temperature ranges can be provided on request.
Protection class:	All standard designs are cast in cast resin, and comply with protection class IP67 according to IEC/EN 60529.
Durability:	The durability mainly depends on the specific case of application and the load values. If limits are adhered to, up to 10^{8} switching operations can be achieved. Please observe our notes on measures for protecting contacts.
Load values:	Important electrical specifications are switched voltages (V), switched current (A) and swit- ched capacity (VA).
Maintenance:	ASA magnetic switches are maintenance-free.

Contacts

Switch type:	Reed				
Contact functions:	NO contact	NC contact	NC contact	Changeover contact Changeover contact	
Max. voltage:	$250 \mathrm{VAC} / \mathrm{DC}$	$250 \mathrm{VAC} / \mathrm{DC}$	$250 \mathrm{VAC/DC}$	$250 \mathrm{VAC/DC}$	$250 \mathrm{VAC/DC}$
	$40-60 \mathrm{~Hz}$				
Max. switched capacity:	60 VA	60 VA	120 VA	60 VA	80 VA
Max. switched current:	1.0 A	1.0 A	3.0 A	1.0 A	1.5 A
Max. transport current:	2.0 A	2.0 A	5.0 A	2.0 A	2.0 A

Bistable contacts

Switch type:	Reed				
Contact functions:	NO contact	NC contact	NC contact	Changeover contact	Changeover contact
Max. voltage:	$\begin{aligned} & 250 \mathrm{VAC} / \mathrm{DC} \\ & 40-60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 250 \mathrm{VAC/DC} \\ & 40-60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 250 \mathrm{VAC} / \mathrm{DC} \\ & 40-60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 250 \text { VAC/DC } \\ & 40-60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 250 \text { VAC/DC } \\ & 40-60 \mathrm{~Hz} \end{aligned}$
Max. switched capacity:	60 VA	60 VA	120 VA	60 VA	80 VA
Max. switched current:	1.0 A	1.0 A	3.0 A	1.0 A	1.5 A
Max. transport current:	2.0 A	2.0 A	5.0 A	2.0 A	2.0 A

ASA magnetic switches

Contact protection measures

Reed contacts react sensitive to overload. When the maximum permitted current value is exceeded or high voltage peaks occur - which is the case when switching capacitive or inductive loads - there is the risk of extensive damage to the reed contact. There is no comprehensive protection in these cases. Depending on the load to be switched, it is, however, possible to prevent a premature failure of the reed contact. The examples below show protective circuits for the various load types:

1. Current limiting device (capacitive loads)

High surges occur as soon as bulbs, capacitors or other consumers attached to long supply lines (cable capacities) are switched on. Such surges can cause extensive damage and even bonding of the contacts. A surge can largely be reduced by connecting a load resistor in series with the reed contact. This ensures a reliable protection and increases the life cycle of the reed contact many times over.

2. Spark suppression (inductive loads)

2.1 Direct voltage

Self induction causes voltage peaks which are a multiple of the voltage applied. Protection from self induction with direct voltage can be achieved by connecting a recovery diode in parallel to the load.

2.2 Alternating voltage

Acombination of resistors and capacitors offers an efficient solution for alternating voltages. Due to the constructural conditions this RC module is arranged in parallel to the load; however, an arrangement in parallel to the contact and in series to the load is also possible.

High voltage peaks which occur when inductive loads are switched, can effectively be suppressed by installing a varistor in parallel to the contact.

Type table for switch designs

Type	No.	Function	PVC connection Line $\mathbf{7 m}$	Volts max.	Amp. max.	VA max.
MA 05 S 60	$\mathbf{8 1 2 0 0 0 3 0}$	BN	CBU	2×0.25	250	1.0

Housing: thermoplastic PA 6.6 glass fibre-reinforced, black grey Protection class: IP 67
Start-up direction: frontal \& lateral, switching zone highlighted in blue
Switching intervals: see page 30

Type	No.	Function	PVC connection Line 1 m	Volts max.	Amp. max.	VA max.
MA 06 S 60	81200040	BN - —BU	2×0.25	250	1.0	60

Housing:	brass, nickel-plated
Protection class:	IP 67
Start-up direction:	frontal \& lateral, switching zone highlighted in blue
Switching intervals:	see page 30

Type	No.	Function	PVC connection Line $1 m$	Volts max.	Amp. max.	VA max.
MA 09 O 5	81200485	BN	—BU	2×0.5	100	0.5

[^0]
Magnetic switches

Type table for switch designs

Type	No.	Function	$\begin{gathered} \text { PVC } \\ \text { connection } \\ \text { Line } 1 \mathrm{~m} \end{gathered}$	Volts max.	Amp. max.	VA max.
MA 2 S 60	81200061	BN - $\longrightarrow \mathrm{BU}$	2×0.5	250	1.0	60
MA 2060	81200063	$\mathrm{BNa} \simeq \square \mathrm{BU}$	2×0.5	250	1.0	60
MA 2 W 60	81200065	$\mathrm{BK} \sim \sim \sim \mathrm{OK}$	2×0.5	250	1.0	60
Housing: Protection class: Start-up direction: Switching intervals	thermoplastic PA 6.6 glass fibre-reinforced, black grey IP 67 frontal \& lateral, switching zone highlighted in blue see page 30					

Type	No.	Function	$\begin{gathered} \text { PVC } \\ \text { connection } \\ \text { Line } 1 \mathrm{~m} \end{gathered}$	Volts max.	Amp. max.	VA max.
MA 3 S 60	81200071	$\mathrm{BN} \sim$ - $\mathrm{BU}^{\text {a }}$	2×0.5	250	1.0	60
MA 3060	81200073	$\mathrm{BN} \sim \square \mathrm{BU}$	2×0.5	250	1.0	60
MA 3 W 60	81200075	$\mathrm{BK} \sim \sim \sim \mathrm{OH}$	3×0.5	250	1.0	60

Housing: brass, nickel-plated
Protection class: IP 67
Start-up direction: frontal \& lateral, switching zone highlighted in blue
Switching intervals: see page 30

Type	No.	Function	PVC connection Line 1m	Volts max.	Amp. max.	VA max.
MA 5 S 120	81200091	$\mathrm{BN} \sim \square \mathrm{BU}$	2×0.5	250	3.0	120
MA 5060	81200093	$\mathrm{BNa} \sim \mathrm{CU}$	2×0.5	250	1.0	60
MA 5 W 60	81200095	$\mathrm{BK} \sim \sim \mathrm{OH}$	3×0.5	250	1.0	60
MA 5 W 80	81200096	$\mathrm{BK} \stackrel{\square}{\square} \sim \mathrm{BY}$	3×0.5	250	1.5	80
Housing: brass, nickel-plated Protection class: IP 67 Start-up direction: frontal \& lateral, switching zone highlighted in blue Switching intervals: see page 30	brass, nickel-plated IP 67 frontal \& lateral, switching zone highlighted in blue s: see page 30					

Magnetic switches

Type table for switch designs

Type	No.	Function	PVC connection Line 1m	Volts max.	Amp. max.	$\begin{aligned} & \text { VA } \\ & \text { max. } \end{aligned}$
MA 7 S 60	81200101	BN - $\longrightarrow \mathrm{BU}$	2×0.5	250	1.0	60
MA 7060	81200103	$\mathrm{BN}=\sim \mathrm{BU}$	2×0.5	250	1.0	60
MA 7 W 60	81200105	$\mathrm{BK} \curvearrowleft \sim \mathrm{GY}$	3×0.5	250	1.0	60

Housing: thermoplastic PA 6.6 glass fibre-reinforced, black grey Protection class: IP 67
Start-up direction: frontal \& lateral, switching zone highlighted in blue
Switching intervals: see page 30

Type	No.	Function	PVC connection Line 1 m	Volts max.	Amp. max.	$\begin{gathered} \text { VA } \\ \text { max. } \end{gathered}$
MA 8 S 120	81200111	$\mathrm{BN}-\sim \mathrm{BU}$	2×0.5	250	3.0	120
MA 8060	81200113	$\mathrm{BN} \sim \sim \mathrm{BU}$	2×0.5	250	1.0	60
MA 8 W 60	81200115	$\mathrm{BK} \propto \sim \mathrm{GY}$	3×0.5	250	1.0	60
MA 8 W 80	81200116	$\mathrm{BK} \curvearrowleft \sim \mathrm{GY}$	3×0.5	250	1.5	80

Housing: thermoplastic PA 6.6 glass fibre-reinforced, black grey Protection class: IP 67
Start-up direction: frontal \& lateral, switching zone highlighted in blue
Switching intervals: see page 30

Type	No.	Function	$\begin{aligned} & \text { PVC } \\ & \text { connection } \\ & \text { Line } 1 m \end{aligned}$	Volts max.	Amp. max.	$\begin{gathered} \text { VA } \\ \text { max. } \end{gathered}$
MA 10 S 60	81200121	BN - -Bu	2×0.5	250	1.0	60
MA 10060	81200123	$\mathrm{BNa} \sim \square \mathrm{BU}$	2×0.5	250	1.0	60
MA 10 W 60	81200125	$\mathrm{BK} \stackrel{\square}{\square}-\mathrm{BY}$	3×0.5	250	1.0	60
MA 10 S 60 ST	81200457	$10 \sim 2$	M12 / 4-pin A-encoded	250	1.0	60
MA 10 O 60 ST	81200458	$1 \bigcirc \sim 2$	M12 / 4-pin A-encoded	250	1.0	60
MA 10 W 60 ST	81200459	$\begin{aligned} & 10 \sim 2 \\ & \square \end{aligned}$	M12 / 4-pin A-encoded	250	1.0	60
MA 10 SO 60	81200161		2×0.5	250	1.0	60

$\begin{array}{ll}\text { Housing: } & \text { thermoplastic PA } 6.6 \text { glass fibre-reinforced, black grey } \\ \text { Protection class: } & \text { IP } 67 \\ \text { Start-up direction: } & \text { frontal \& lateral, switching zone highlighted in blue } \\ \text { Switching intervals: see page } 30\end{array}$

Magnetic switches

Type table for switch designs

Type	No.	Function	$\begin{gathered} \text { PVC } \\ \text { connection } \\ \text { Line } 1 \mathrm{~m} \end{gathered}$	Volts max.	Amp. max.	$\begin{gathered} \text { VA } \\ \text { max. } \end{gathered}$
MA 11 S 60	81200131	$\mathrm{BN},-\mathrm{CBU}$	2×0.5	250	1.0	60
MA 11060	81200133	$\mathrm{BN} \times \sim \mathrm{BU}$	2×0.5	250	1.0	60
MA 11 W 60	81200135	$\begin{array}{ll} \mathrm{BK} . \square \mathrm{GY} \\ & \mathrm{BN} \end{array}$	3×0.5	250	1.0	60
MA 11 S 60 ST	81200460	$10 \sim 2$	M12 / 4-pin A-encoded	250	1.0	60
MA 11 O 60 ST	81200461	2	M12 / 4-pin A-encoded	250	1.0	60
MA 11 W 60 ST	81200462	$\begin{aligned} & 1-\quad 2 \\ & 1-3 \end{aligned}$	M12 / 4-pin A-encoded	250	1.0	60
MA 11 SO 60	81200171		2×0.5	250	1.0	60

$$
\begin{array}{ll}
\text { Housing: } & \text { thermoplastic PA } 6.6 \text { glass fibre-reinforced, black grey } \\
\text { Protection class: } & \text { IP } 67 \\
\text { Start-up direction: } & \text { frontal \& lateral, switching zone highlighted in blue } \\
\text { Switching intervals: see page } 30
\end{array}
$$

Type	No.	Function	$\begin{gathered} \text { PVC } \\ \text { connection } \\ \text { Line } 1 \mathrm{~m} \end{gathered}$	Volts max.	Amp. max.	$\begin{aligned} & \text { VA } \\ & \text { max. } \end{aligned}$
MA 12 S 120	81200141	$\mathrm{BN}, \sim \mathrm{BU}$	2×0.5	250	3.0	120
MA 12060	81200143	BNa - $\mathrm{BU}^{\text {a }}$	2×0.5	250	1.0	60
MA 12 W 60	81200145	$\mathrm{BK} \stackrel{\square}{\square} \quad \underset{\mathrm{ON}}{ }$	3×0.5	250	1.0	60
MA 12 W 80	81200146	$\mathrm{BK} \stackrel{\square}{\square} \quad \underset{\mathrm{BN}}{ }$	3×0.5	250	1.5	80
MA 12 S 120 ST	81200463	$10 \sim 2$	M12 / 4-pin A-encoded	250	3.0	120
MA 12 O 60 ST	81200464	$10 \sim 2$	M12 / 4-pin A-encoded	250	1.0	60
MA 12 W 60 ST	81200465	$1 \propto{ }^{-}$	M12 / 4-pin A-encoded	250	1.0	60
MA 12 W 80 ST	81200466	$\begin{array}{r} \square \\ 1 \circ-2 \\ \longrightarrow 3 \end{array}$	M12 / 4-pin A-encoded	250	1.5	80
MA 12 SO 60	81200181	8 Na - ${ }^{-} \mathrm{BU}$	2×0.5	250	1.0	60
MA 12 SO 120	81200182		2×0.5	250	3.0	120
MA 12 SOW 60	81200183	$\begin{array}{r} 1 \circ 2 \\ \square \end{array}$	3×0.5	250	1.0	60
MA 12 SOW 80	81200184	$\begin{array}{r} 1 \circ 5+2 \\ \multimap 3 \end{array}$	3×0.5	250	1.5	80
Housing: thermoplastic PA 6.6 glass fibre-reinforced, black grey Protection class: IP 67 Start-up direction: frontal \& lateral, switching zone highlighted in blue Switching intervals: see page 30	thermoplastic PA 6.6 glass fibre-reinforced, black grey IP 67 frontal \& lateral, switching zone highlighted in blue : see page 30					

Magnetic switches

Type table for switch designs

Type	No.	Function	$\begin{gathered} \text { PVC } \\ \text { connection } \\ \text { Line } 1 m \end{gathered}$	Volts max.	Amp. max.	$\begin{aligned} & \text { VA } \\ & \text { max. } \end{aligned}$
MA 13 S 120	81200151	BN - -BU	2×0.5	250	3.0	120
MA 13060	81200153	$\mathrm{BNa} \sim \square \mathrm{BU}$	2×0.5	250	1.0	60
MA 13 W 60	81200155	$\mathrm{BK} \stackrel{\square}{\multimap \mathrm{GN}}$	3×0.5	250	1.0	60
MA 13 W 80	81200156	$B K \stackrel{\square}{\sim} \underset{\sim}{\square}$	3×0.5	250	1.5	80
MA 13 S 120 ST	81200467	$10-2$	M12 / 4-pin A-encoded	250	3.0	120
MA 13 O 60 ST	81200468	10×2	M12 / 4-pin A-encoded	250	1.0	60
MA 13 W 60 ST	81200469	$\begin{aligned} & 1-\quad 2 \\ & \square \end{aligned}$	M12 / 4-pin A-encoded	250	1.0	60
MA 13 W 80 ST	81200470	$\begin{aligned} & 1 \circ 2 \\ & 1 \circ 3 \end{aligned}$	M12 / 4-pin A-encoded	250	1.5	80
MA 13 SO 60	81200191	BN	2×0.5	250	1.0	60
MA 13 SO 120	81200192		2×0.5	250	3.0	120
MA 13 SOW 60	81200193	$\begin{array}{r} 10 \leq 2 \\ \square \end{array}$	3×0.5	250	1.0	60
MA 13 SOW 80	81200194	$\begin{array}{r} 10 \leq+2 \\ \hdashline 3 \end{array}$	3×0.5	250	1.5	80

Housing:	thermoplastic PA 6.6 glass fibre-reinforced, black grey
Protection class:	IP 67
Start-up direction:	frontal \& lateral, switching zone highlighted in blue
Switching intervals:	see page 30

Type	No.	Function	$\begin{gathered} \text { PVC } \\ \text { connection } \\ \text { Line } 1 m \end{gathered}$	Volts max.	Amp. max.	vA max.
MA 18 S 120	81200471	$\mathrm{BNa} \sim \mathrm{BU}$	2×0.5	250	3.0	120
MA 18060	81200472	$\mathrm{BN} \times \sim \square \mathrm{BU}$	2×0.5	250	1.0	60
MA 18 W 60	81200473	$\mathrm{BK} \stackrel{\square}{\square} \stackrel{\mathrm{GY}}{ }$	3×0.5	250	1.0	60
MA 18 W 80	81200474	$\mathrm{BK} \sim \sim \mathrm{\square}$	3×0.5	250	1.5	80
MA 18 S 120 ST	81200475	$10 \sim 2$	M12 / 4-pin A-encoded	250	3.0	120
MA 18 O 60 ST	81200476	$10 \sim 2$	M12 / 4-pin A-encoded	250	1.0	60
MA 18 W 60 ST	81200477	$\begin{aligned} & \\ & 1 \circ \\ & \longrightarrow \end{aligned}$	M12 / 4-pin A-encoded	250	1.0	60
MA 18 W 80 ST	81200478	$\begin{aligned} & 1 \circ \sim 2 \\ & \square \end{aligned}$	M12 / 4-pin A-encoded	250	1.5	80

Housing: brass, nickel-plated
Protection class: IP 67
Start-up direction: frontal \& lateral, switching zone highlighted in blue
Switching intervals: see page 30

Magnetic switches

Type table for switch designs

Type	No.	Function	PVC connection Line 1 m	Volts max.	Amp. max.	VA max.
MA 28 S 120	81200281	$\mathrm{BN}-\sim \mathrm{BU}$	2×0.5	250	3.0	120
MA 28 O 60	81200283	$\mathrm{BN} \sim \ldots \mathrm{BU}$	2×0.5	250	1.0	60
MA 28 W 60	81200285	$\mathrm{BK} \circ \sim \mathrm{OH}$	3×0.5	250	1.0	60
MA 28 W 80	81200286	$\mathrm{BK} \rightleftharpoons \sim \mathrm{GY}$	3×0.5	250	1.5	80
MA 28 SO 60	81200288	$\mathrm{BN}-3 \sim \mathrm{BU}$	2×0.5	250	1.0	60
MA 28 SO 120	81200289	$\mathrm{BN} \sim$ - BU	2×0.5	250	3.0	120
MA 28 SOW60	81200290	$\mathrm{BK} a \underset{\square}{\square} \underset{\mathrm{GY}}{ }$	3×0.5	250	1.0	60
MA 28 SOW80	81200291	$\mathrm{BK} \stackrel{\square}{\square} \square \mathrm{GY}$	3×0.5	250	1.5	80
Housing: thermoplastic PA 6.6 glass fibre-reinforced, black grey Protection class: IP 67 Start-up direction: frontal \& lateral, switching zone highlighted in blue Switching intervals: see page 30	thermoplastic PA 6.6 glass fibre-reinforced, black grey IP 67 frontal \& lateral, switching zone highlighted in blue s: see page 30					

Type	No.	Function	$\begin{aligned} & \text { PVC } \\ & \text { connection } \\ & \text { Line } 1 \mathrm{~m} \end{aligned}$	Volts max.	Amp. max.	VA max.
MA 29 S 120	81200301	BN - $\longrightarrow \mathrm{Cu}$	2×0.5	250	3.0	120
MA 29060	81200303	BNa - $\mathrm{BU}^{\text {a }}$	2×0.5	250	1.0	60
MA 29 W 60	81200305	$\begin{aligned} & \mathrm{BK} \underset{\sim}{\sim} \mathrm{GN} \end{aligned}$	3×0.5	250	1.0	60
MA 29 W 80	81200306	$\mathrm{BK} \stackrel{\square}{\square} \stackrel{\mathrm{BN}}{ }$	3×0.5	250	1.5	80
MA 29 SO 60	81200308	BN	2×0.5	250	1.0	60
MA 29 SO 120	81200309		2×0.5	250	3.0	120
MA 29 SOW60	81200310	$\mathrm{BK} \stackrel{S \sim \mathrm{GY}}{\sim}-\mathrm{BN}$	3×0.5	250	1.0	60
MA 29 SOW80	81200311		3×0.5	250	1.5	80
Housing: Protection class: Start-up direction: Switching intervals:	brass, nic IP 67 s: see page	kel-plated ateral, switc 0	ing zone hish	ighte	blue	

Type	No.	Function	PVC connection Line 1 m	Volts max.	Amp. max.	$\begin{aligned} & \text { VA } \\ & \max . \end{aligned}$
MA 30 S 60	81200321	$\mathrm{BN} \sim \sim \mathrm{CU}$	2×0.5	250	1.0	60
MA $30 \bigcirc 60$	81200323	$\mathrm{BN} \sim \square \mathrm{BU}^{\text {a }}$	2×0.5	250	1.0	60
MA 30 W 60	81200325	$\mathrm{BK} \circ \sim \mathrm{GY}$	3×0.5	250	1.0	60

Housing: brass nickel-plated/thermoplastic PA 6.6 glass fibre-reinforced, black grey Protection class: IP 67
Start-up direction: frontal \& lateral, switching zone highlighted in blue
Switching intervals: see page 30

Type	No.	Function	PVC connection Line $1 m$	Volts max.	Amp. max.	$\begin{aligned} & \text { VA } \\ & \max . \end{aligned}$
MA 31 S 60	81200341	$\mathrm{BN} \sim \sim \mathrm{BU}$	2×0.5	250	1.0	60
MA 31 O 60	81200343	$\mathrm{BN} 0 \ldots \mathrm{BU}$	2×0.5	250	1.0	60
MA 31 W 60	81200345	$\mathrm{BK} \stackrel{\sim}{\multimap} \stackrel{\mathrm{GY}}{ }$	3×0.5	250	1.0	60

Housing: brass nickel-plated/thermoplastic PA 6.6 glass fibre-reinforced, black grey Protection class: IP 67
Start-up direction: frontal \& lateral, switching zone highlighted in blue
Switching intervals: see page 30

Magnetic switches

Type table for switch designs

Type	No.	Function	PVC connection Line 1 m	Volts max.	Amp. max.	$\begin{aligned} & \text { VA } \\ & \max . \end{aligned}$
MA 32 S 60	81200479	$\mathrm{BN}-\sim \mathrm{BU}$	2×0.5	250	1.0	60
MA $32 \bigcirc 60$	81200480	$\mathrm{BNa} \sim \rightarrow \mathrm{BU}$	2×0.5	250	1.0	60
MA 32 W 60	81200481	$\mathrm{BK} \circ \sim \mathrm{CH}$	3×0.5	250	1.0	60

Housing: thermoplastic PA 6.6 glass fibre-reinforced, black grey Protection class: IP 67
Start-up direction: frontal \& lateral, switching zone highlighted in blue Switching intervals: see page 30

Type	No.	Function	PVC connection Line 1m	Volts max.	Amp. max.	$\begin{aligned} & \text { VA } \\ & \text { max. } \end{aligned}$
MA 33 S 60	81200482	$\mathrm{BN}-\sim \mathrm{BU}$	2×0.5	250	1.0	60
MA $33 \bigcirc 60$	81200483	$\mathrm{BN} \sim \sim \mathrm{BU}$	2×0.5	250	1.0	60
MA 33 W 60	81200484	$\mathrm{BK} \circ{ }^{\circ} \quad \mathrm{GY}$	3×0.5	250	1.0	60

Housing: thermoplastic PA 6.6 glass fibre-reinforced, black grey Protection class: IP 67
Start-up direction: frontal \& lateral, switching zone highlighted in blue
Switching intervals: see page 30

Type	No.	Function	PVC connection Line $1 m$	Volts max.	Amp. max.	$\begin{gathered} \text { VA } \\ \text { max. } \end{gathered}$
MA 40 S 60	81200370	$\mathrm{BN} \times$ - $\mathrm{BU}^{\text {a }}$	2×0.5	250	1.0	60
MA 40060	81200371	$\mathrm{BNa} \sim \square \mathrm{BU}$	2×0.5	250	1.0	60

Housing: thermoplastic PA 6.6 glass fibre-reinforced, black grey Protection class: IP 67
Start-up direction: frontal \& lateral, switching zone highlighted in blue Switching intervals: see page 30

Type	No.	Function	PVC connection Line $1 m$	Volts max.	Amp. max.	$\begin{aligned} & \text { VA } \\ & \text { max. } \end{aligned}$
MA 41 S 60	81200380	BN - $\longrightarrow \mathrm{BU}$	2×0.5	250	1.0	60
MA 41060	81200381	BNa	2×0.5	250	1.0	60
Housing: thermoplastic PA 6.6 glass fibre-reinforced, black grey Protection class: IP 67 Start-up direction: frontal \& lateral, switching zone highlighted in blue Switching intervals: see page 30	thermoplastic PA 6.6 glass fibre-reinforced, black grey IP 67 frontal \& lateral, switching zone highlighted in blue : see page 30					

Magnetic switches

Type table for switch designs

Type	No.	Function	PVC connection Line $1 m$	Volts max.	Amp. max.	$\begin{aligned} & \text { VA } \\ & \text { max. } \end{aligned}$
MA 36 S 60	81200360	BN, - $\mathrm{BU}^{\text {a }}$	2×0.25	250	1.0	60
MA 36060	81200361	$\mathrm{BNa} \sim \square \mathrm{BU}$	2×0.25	250	1.0	60
Housing: thermoplastic PA 6.6 glass fibre-reinforced, black grey Protection class: IP 67 Start-up direction: frontal \& lateral, switching zone highlighted in blue Switching intervals: see page 31	thermoplastic PA 6.6 glass fibre-reinforced, black grey IP 67 frontal \& lateral, switching zone highlighted in blue see page 31					

Type	No.	Function	PVC connection Line $1 m$	Volts max.	Amp. max.	$\begin{gathered} \text { VA } \\ \text { max. } \end{gathered}$
MA 50 S 120	81200421	$\mathrm{BN} \sim$ - $\mathrm{BU}^{\text {u }}$	2×0.5	250	3.0	120
MA 50060	81200423	$\mathrm{BNa} \sim \square \mathrm{BU}$	2×0.5	250	1.0	60
MA 50 W 60	81200425	$\mathrm{BK} \stackrel{\square}{\square} \underset{\mathrm{BN}}{ }$	3×0.5	250	1.0	60
MA 50 W 80	81200426	$\mathrm{BK} \sim \sim \mathrm{OH}$	3×0.5	250	1.5	80
MA 50 SO 60	81200428	BN_{0} - ${ }^{\text {L }} \mathrm{BU}$	2×0.5	250	1.0	60
MA 50 SO120	81200429	$\mathrm{BN}_{0} \underbrace{\sim} \mathrm{BU}$	2×0.5	250	3.0	120
MA 50 SOW60	81200430		3×0.5	250	1.0	60
MA 50 SOW80	81200431		3×0.5	250	1.5	80

Housing: thermoplastic PA 6.6 glass fibre-reinforced, black grey Protection class: IP 67
Start-up direction: frontal \& lateral, switching zone highlighted in blue Switching intervals: see page 31

Magnets - overview:

Two variants are mainly used: round magnets and bar magnets.

Round magnets made of barium ferrite are used for frontal switching:
These designs are non-ageing and highly resistant to interfering fields.Ambient temperatures of $-20{ }^{\circ} \mathrm{C}$ to $+220{ }^{\circ} \mathrm{C}$ are permitted. Please note the following regarding the accuracy of switching point:The magnetic force decreases by $0.2 \% /{ }^{\circ} \mathrm{C}$ as the temperature values rise above room temperature.

Bar magnets made from AINiCo are used for lateral switching:
These variants can be used for a very wide temperature range from $-220{ }^{\circ} \mathrm{C}$ to $+400{ }^{\circ} \mathrm{C}$. With values above room temperature the magnetic force only decreases by $0.02 \% /{ }^{\circ} \mathrm{C}$.

Type key for magnets

Magnetic switches

Type table for switch designs

Type	No.	Material	Design	D	d	h	t	Polarization
MA 2036 N	81201002			20	3.2	6	2	N
MA 2036 S	81201003			20	3.2	6	2	S
MA 20510 N	81201004			20	5.2	10	2	N
MA 20510 S	81201005			20	5.2	10	2	S
MA 23410 N	81201006			23	4.4	10	2	N
MA 23410 S	81201007			23	4.4	10	2	S
MA 31515 N	81201008			31	5.3	15		N
MA 31515 S	81201009			31	5.3	15		S

Axial magnetisation. In the table the pole is specified for the magnet side with flush mounting

Type	No.	Material	Design	D	d	h	t	Polarization
MA 2036 NK	81201102			22	3.2	7	3	NK
MA 2036 SK	81201103			22	3.2	7	3	SK
MA 20510 NK	81201104			22	5.2	11	3	NK
MA 20510 SK	81201105			22	5.2	11	3	SK
MA 23410 NK	81201106			25	4.4	11	3	NK
MA 23410 SK	81201107			25	4.4	11	3	SK
MA 31515 NK	81201108			33	5.3	16	3,5	NK
MA 31515 SK	81201109			33	5.3	16	3,5	SK

Axial magnetisation. In the table the pole is specified for the magnet side with flush mounting.
Protective cap made from insulating mould material, 1 mm thick. \mathbf{N} at the flush mounting with red cap
\mathbf{S} at the flush mounting with blue cap

Type table for switch designs

Type	No.	Material	Design	D	d	h	t	Polarization
MA 45139 NS	81201300	$\frac{0}{\frac{0}{4}}$		See dimensioned drawing				
MA 45139 SN	81201301							
MA 45139 M	81201302							

Housing made from thermoplastic PA 6.6 glass fibre-reinforced, black grey.

Type	No.	Material	Design	D	d	h	t	Polarization
MA 802015 NS	81201400	$\frac{0}{3}$		See dimensioned drawing				
MA 802015 SN	81201401							
MA 802015 M	81201402							

[^1]
Magnetic switches

Magnets for frontal start-up direction

MA 2036 N	MA 20510 N	MA 23410 N	MA 31515 N	MA 2036 NK	MA 20510 NK
MA 2036 S	MA 20510 S	MA 23410 S	MA 31515 S	MA 2036 SK	MA 20510 SK

Start-up direction	Contact function	Switching capacity							
		Amp.	VA						
		1.0	30	7	10	13	25	6	9
		2.0	60	8	11	14	26	7	10
		3.0	100	-	5	8	24	-	4
		0.5	30	10	12	15	30	9	11
		1.5	60	10	12	15	30	9	11
		0.5	30	10	12	15	30	9	11
		1.5	60	10	12	15	30	9	11
		1.5	80	5	8	11	27	4	7
		1.0	30	16	10	13	25	6	9
		2.0	60	32	11	14	26	7	10
		3.0	100	28	5	8	24	-	4
		1.0	60	28	12	15	30	9	11
		1.5	80	22	12	15	30	9	11
		1.0	30	-	-	-	-	-	-
		2.0	60	-	-	-	-	-	-
		3.0	100	-	-	-	-	-	-
		0.5	30	-	-	-	-	-	-
		1.5	60	-	-	-	-	-	-
		2.0	80	-	-	-	-	-	-
	-	0.5	30	-	-	-	-	-	-
		1.5	60	-	-	-	-	\bullet	-
		1.5	80	-	-	-	-	-	-
		1.0	30	15	20	25	40	14	19
		2.0	60	25	29	32	42	24	28
		3.0	100	20	25	30	44	19	24
		1.0	60	20	23	26	41	19	22
		1.5	80	20	23	26	41	19	22

Switching interval

The switching interval depends on the type and design of the magnet, function and switching capacity of the contact and on the start-up direction. The switching intervals specified are maximum values and were determined at room temperatures. The intervals refer to the contact func-
tions and switching capacities specified on catalogue page 9.

Selection

The fields with preferred combinations are surrounded by red lines.Additional designs and/or combinations can be provided on request.

Magnets for lateral start-up direction

MA 23410 NK MA 23410 SK	MA 31515 NK MA 31515 SK	MA 5025	MA 6025	MA 10050	MA 45139 NS MA 45139 SM	MA 45139 M	MA 802015 NS MA 802015 SM	MA 802015 M
		\square	\square	-				
12	24	-	-	\bullet	-	-	-	-
13	25	-	-	-	-	-	-	-
7	23	-	-	-	-	-	-	-
14	29	-	-	-	-	-	-	-
14	29	-	-	-	-	-	-	-
14	29	-	-	-	-	-	-	-
14	29	-	-	-	-	-	-	-
32	26	-	-	-	-	-	-	-
12	24	6	8	25	-	-	-	-
13	25	19	23	48	-	-	-	-
7	23	12	16	35	-	-	-	-
14	29	12	16	35	-	-	-	-
14	29	10	14	33	-	-	-	-
-	-	6	8	22	4	4	20	17
-	-	10	12	24	8	8	22	19
-	-	9	11	29	7	7	27	24
-	-	8	10	26	6	6	24	21
-	-	8	10	26	6	6	24	21
-	-	9	10	21	7	6	19	16
-	-	8	10	26	6	6	24	21
-	-	8	10	26	6	6	24	21
-	-	9	11	30	7	7	28	25
24	39	7	9	25	-	-	-	-
31	41	13	15	35	-	-	-	-
29	43	10	12	30	-	-	-	-
25	40	12	16	35	-	-	-	-
25	40	14	16	36	-	-	-	-

Accuracy of switching point

With constant ambient conditions a reproducibility of at least 0.01 mm can be achieved. However, if the ambient temperature varies by $+/-20^{\circ} \mathrm{C}$, a displacement of $+/-0.05 \mathrm{~mm}$ can occur.

Assembly notes
Iron parts within close vicinity can influence the switching interval. We are happy to provide samples for testing purposes.

Magnetic switches

Accessories

Type	No.	d	
MW 8 2	35500002	8	
MW 12 2	35500003	12	Mounting bracket with slot mounting, thermoplastic PA 6.6 glass fibre- reinforced, black grey
MW 15 2	35500004	15	
MW 18 2	35500005	18	

Type	No.	d	Description
MW 84	35500006	8	Mounting bracket with slot mounting, thermoplastic PA 6.6 glass fibrereinforced, black grey
MW 124	35500007	12	
MW 154	35500008	15	
MW 184	35500009	18	

Special designs

We also offer special designs for specific applications - and are happy to advice you if required!

Housing

In addition to standard designs we also provide special forms and special materials.

Contact material

In addition to the standard contact materials rhodium and tungsten we also provide specific designs such as ruthenium, gold coating or mercury film contacts.

Switching capacity

For higher capacities in direct circuits up to 5 A, 250 VA.

Contact protection

See page 10.

Accuracy of switching point

For high requirements regarding the reproducibility, the switching contacts can be subject to a special pretreatment and to artificial aging.

Temperature range

Special contacts for extreme ambient temperatures from $-55{ }^{\circ} \mathrm{C}$ to $+320{ }^{\circ} \mathrm{C}$ and special lines made from silicone or Teflon.

Magnets

In addition to standard designs we also provide special forms and special materials.

ASA Schalttechnik GmbH
F.-A.-Meyer-Straße 4

32457 Porta Westfalica
Germany
Phone: +49(0)571/97530-0
Fax: $+49(0) 571 / 9753080$
www.asa-schalttechnik.com info@asa-schalttechnik.de

[^0]: Housing: brass, nickel-plated
 Protection class: IP 67
 Start-up direction: frontal \& lateral, switching zone highlighted in blue
 Switching intervals: see page 30

[^1]: Housing made from thermoplastic PA 6.6 glass fibre-reinforced, black grey.

